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The use of technology in ecology and conservation offers unprecedented opportunities to
survey and monitor wildlife remotely, for example by using camera traps. However, such
solutions typically cause challenges stemming from the big datasets gathered, such as
millions of camera trap images. Artificial intelligence is a proven, powerful tool to auto-
mate camera trap image analyses, but this is so far largely been restricted to species iden-
tification from images. Here, we develop and test an artificial intelligence algorithm that
allows discrimination of individual animals carrying a tag (in this case a patagial yellow
tag on vultures) from a large array of camera trap images. Such a tool could assist scien-
tists and practitioners using similar patagial tags on vultures, condors and other large
birds worldwide. We show that the overall performance of such an algorithm is relatively
good, with 88.9% of all testing images (i.e. those not used for training or validation) cor-
rectly classified using a cut-off discrimination of 0.4. Specifically, performance was high
for correctly classifying images with a tag (95.2% of all positive images correctly classi-
fied), but less so for images without a tag (87.0% of all negative images). The correct
classification of images with a tag was, however, significantly higher when the tag code
was at least partly readable compared with the other cases. Overall, this study under-
scores the potential of artificial intelligence for assisting scientists and practitioners in
analysing big datasets from camera traps.

Keywords: animal tag detection, camera trapping, capture–mark–recapture, conservation-
technology, deep learning, image recognition, resighting, vulture.

INTRODUCTION

The fields of ecology and conservation biology are
undergoing an unprecedented revolution in which
traditional survey methods are being replaced with
passive technological approaches (Pimm
et al. 2015). One example is the exponential
increase in the use of camera traps to survey ani-
mals (Wearn & Glover-Kapfer 2019). However,

the use of technology, such as camera traps, often
results in enormous amounts of material (e.g. mil-
lions of images) that then need to be organized,
stored and analysed in order to be used in ecologi-
cal studies.

The use of artificial intelligence to process
the large amount of material obtained from passive
sensors such as drone-borne images and camera
traps is still in its infancy but rapidly developing
(Norouzzadeh et al. 2018, Miao et al. 2019,
Tabak et al. 2019, Willi et al. 2019, Santangeli
et al. 2020a). Overall, machine-learning approaches
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show high potential for automating the identifica-
tion of animals from camera trap images and thus
reducing the burden and errors associated with ana-
lysing millions of images manually (Norouzzadeh
et al. 2018, Tabak et al. 2019).

Most applications of machine learning to aid
camera trap image analyses so far have focused on
identifying wildlife species (Willi et al. 2019).
Recently, the use of camera traps was shown to be
a particularly effective means for identifying and
thus resighting individually marked animals, such
as wing-tagged vultures in Africa, so allowing sur-
vival analyses (Santangeli et al. 2020b). However,
that study relied exclusively on manual identifica-
tion of tagged individuals. So far, to the best of
our knowledge, no applications of artificial intelli-
gence for analysing camera trap images have
focused on the identification of tagged animals.
This is unfortunate given the importance of
resighting information of tagged individuals to
facilitate survival rate estimation, a critical demo-
graphic rate in wildlife management decision-
making that is unquantified in many taxa (Conde
et al. 2019). There is a need for an automated, or
at least semi-automated, system to reduce human
labour and processing time of images. Such an
automated system would benefit not only projects
focused on vultures or other similarly tagged large
birds but would serve as an example for other pro-
jects where animals are individually marked and
then resighted using camera traps.

Here we evaluate for the first time the perfor-
mance of a semi-automated system based on cam-
era trap images and a deep-learning algorithm to
detect individually marked vultures from the mul-
titude of images captured by camera traps. Specifi-
cally, we first assess the overall performance of the
system in detecting images with a tagged vulture.
Next, we assess how the system performs in
detecting tags from images where the individual
code is readable, which are therefore images that
contribute to quantification of demographic rates
based on detecting known individuals (Santangeli
et al. 2020b). We then compare the time taken
for manual screening of images with the time
taken to screen only the images with a tag as iden-
tified by the system in order to measure the time
saved. In this specific case, we consider the identi-
fication from camera trap images of Lappet-faced
Vultures Torgos tracheliotus marked with a yellow
plastic cattle ear tag; a very commonly used
method for tagging vultures and other large birds

across southern Africa and beyond (Birds of Prey
Working Group 2006, Martin & Major 2010,
Monadjem et al. 2012). For all such projects, a
semi-automated tag identification system could
offer practitioners enormous time savings when
processing the camera trap material.

METHODS

Ethics statement

The work was conducted in accordance with all
relevant national and international guidelines. The
handling and wing tagging of nestlings were carried
out by experienced bird ringers holding a valid
ringing licence approved by the Namibian Ministry
of Environment and Tourism, and following the
guidelines for ringing provided by SAFRING
(http://safring.adu.org.za/).

Field study design

The study was conducted in south-western Namib-
ia, specifically within and around the Namib-
Naukluft Park (24°14005″S, 15°19006″E). In this
arid savannah landscape, the breeding population
of the Lappet-faced Vultures has been monitored
since 1991, when efforts to find vulture nests and
ring the chicks began. These efforts increased until
2006 and have been largely stable since (Santan-
geli et al. 2018). From 2006, aerial surveys were
used to search for active nests, followed by ground
visits to fit the nestlings with a stainless-steel ring
and to mark them using patagial wing tags with a
unique code (Santangeli et al. 2018) to aid their
subsequent individual identification. The same sur-
vey was performed every year from 2006.

Resightings of vultures with a wing tag (here-
after tag) were obtained from two sources: oppor-
tunistic observations by citizens, and observations
from camera traps (Santangeli et al. 2020b). The
latter started in 2014. Camera traps were placed
around water points, which are regularly visited by
vultures, particularly during the breeding season
(September to January). During the first year
(2014) a single camera trap was placed in one
location, but the project was then progressively
expanded to nine camera trap locations that have
been recording continuously since their installa-
tion, taking pictures of any moving animal occur-
ring at and around the water point during
daylight. All images from the cameras have to date
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been manually scanned and inspected to identify
tagged vultures, and to read the wing tag number.
The information was then directly entered in a
database that was recently used to estimate the
survival rate of this species for the first time (San-
tangeli et al. 2020b). Overall, processing the hun-
dreds of thousands of images over the years has
amounted to an enormous burden of manual
work. For this study, we used images collected by
cameras at nine different sites located in the north-
eastern part of the Namib-Naukluft Park.

Deep-learning algorithm for tag
identification

To automatically detect a tagged vulture in an
image and enclose the detected tag in a bounding
box for better visibility than simply training a clas-
sification model, we trained a deep-learning object
detection model to detect tags while minimizing
the occurrence of false positives (hereafter false
presences) and false negatives (hereafter false
absences). In doing so, we chose a convolutional
neural network approach (Zhang et al. 1990) and
the YOLOv3 training program (Redmon &
Farhadi 2018), as used in similar recent studies
(Corcoran et al. 2019, Santangeli et al. 2020a).

We selected all images with vultures carrying a
visible tag (positive images, n = 1379), and a sam-
ple of randomly selected images without a tag
(negative images, n = 817). We selected more pos-
itive than negative images because the former are
later split into three sets of images (see below),
and because it is always recommended to have
more training (positive) images than negative (test-
ing) images for achieving a good performance in
these types of models. We then manually labelled
all positive images using ImageJ 1.8.0 (Ras-
band 2018) with bounding boxes (i.e. we drew a
rectangle (bounding box) around each visible tag/-
tags in each image; see Fig. 1 for examples). The
size of the box was not fixed, because the size of
the tag in each image differed depending on how
close the bird was to the camera, and in what
position. The main criterion for drawing the
bounding box was that it had to be large enough
to include the whole tag while minimizing the
inclusion of other unnecessary parts of an image.
We next extracted the coordinates of the top left
and bottom right corner of each bounding box in
each image and added them to a database along
with the corresponding image name. This database
was then used to inform the algorithm of the posi-
tion of the object (the tag), in each image. This

Figure 1. Example images representing a vulture carrying a readable tag (left; whereby the tag code identifying the individual bird is
readable from this image), and one with unreadable tag (right; whereby it is not possible to read the tag code). The bounding box
and the percentage confidence that the object is indeed a tag (60.4% in the left image, 84% in the right image) are also shown as
text on top of the bounding box. Images were cropped to facilitate their interpretation.
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information was used for training (as well as test-
ing and validating) the YOLOv3 model. Next, we
allocated all positive images containing only one
tag per image (n = 909 images) to a training set
(i.e. used to train the algorithm to identify a tag).
The remaining positive images with multiple tags
per image were split into a validation set (n = 240
images used to select the best candidate neural
network model) and a testing set (n = 230 images
used for assessing the performance of the identified
best candidate neural network model).

Training was executed for 500 epochs (‘itera-
tions’), whereby each training image passes forward
and backward through the neural network. By exe-
cuting multiple epochs (i.e. multiple ‘learning ses-
sions’), the algorithm progressively ‘learns’ how to
recognize a tag (training program available at
github.com/ultralytics/yolov3). During the training
stage, each connection between neurons (i.e.
nodes) of the network gets a weight value, which in
practice represents the strength of the connection
between neurons. After training was completed, a
weights file, which included the final weight value
stored by each neuron, was generated. We then
developed a program that reads the configuration
file of the YOLOv3 neural network architecture,
which is a default basic architecture that is used as
a start and can be modified. The program then
reads the trained weights file to configure the neu-
ral network architecture for the purpose of this
study within the PyTorch implementation that per-
mits building of neural network architectures
within a Python environment. Within PyTorch, we
developed our own program to read the trained
weights file and allow the construction of a deep-
learning model specifically for tag detection. This
was then validated among all other candidate mod-
els and tested against the testing set using various
metrics (see Results section).

Through the testing, an output value was pro-
duced representing the confidence that an image
included a tag. Values close to zero indicate an
empty image (i.e. no tag) with a high confidence,
whereas values close to one indicate that an image
included a tag with a high confidence. In cases
where multiple spots appeared as possible tags,
the overall confidence for that image was taken
from the spot with the highest confidence value.

Performance of the neural network in discrimi-
nating images as having a tag or not was assessed
during both training and testing stages. In the
training stage, we fine-tuned the intersection-over-

union threshold (IoU) for each epoch. IoU is the
ratio between the overlapping area and the union
area of a proposed label (i.e. the candidate object
identified by the model as a potential tag) and a
ground truth label (the bounding box coordinates
that included a tag as identified manually). Higher
IoU indicates that the object of interest is more
likely to be contained in the proposed detection.
Simultaneously, we recorded and evaluated preci-
sion (propensity to minimize false positives), recall
(propensity to minimize false negatives), mean
average precision (the overall discrimination accu-
racy averaged over different detection threshold
levels) and F1 score (the harmonic mean of preci-
sion and recall). The last metric was relevant
because from the mathematical definitions of pre-
cision and recall, there exists a trade-off amid both
metrics, resulting in the two metrics often having
an inverse relationship (see Fig. 3 in the Results
section), thus making both metrics uninformative.
The F1 score can be viewed as the optimal balance
between precision and recall, that is, the score at
which false positives and false negatives are mini-
mal. We also report loss, which shows the overall
error value, that is, a measure of the mismatch
between outcomes of the neural network (the can-
didate object identified by the model as a potential
tag) and ground truth labels (the bounding box
that included a tag as identified manually). The
loss value was derived using loss functions pre-
defined by the neural network. As training pro-
ceeds through the 500 epochs, the aforementioned
four metrics are expected to grow and converge at
a relatively high value, whereas loss is expected to
decrease and converge to a low value (see Fig. 2).

By fine-tuning different sets of the model
hyper-parameters (i.e. parameters that can be
manually fine-tuned to find the optimal perfor-
mance), multiple candidate models were gener-
ated. These alternative neural network models
were then evaluated using the validation set (i.e.
the set of 240 images, see above) to select the best
model, indicated by F1 score, at a 40% confidence
threshold (Fig. 3). This threshold indicates the
cut-off point that minimizes the risk of false nega-
tives and false positives. Our proposed model was
selected from some 40 candidates and was then
progressed into the final testing stage, during
which we applied the testing set (consisting of 230
images) and recorded its performance in correctly
retrieving relevant detections. Specifically, we
recorded precision and recall, calculated the F1
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score and plotted a precision–recall curve for confi-
dence threshold across the range from 1% to 99%
with 10% intervals.

Statistical analyses

We quantified whether the performance of the
deep-learning algorithm differed between images
where the tag code was at least partly readable
and where it was unreadable. For this we used
only the testing set of positive images (n = 230
images), that is, all images including a vulture with
a tag that were not used for training the deep-
learning algorithm. We ran a beta regression model
(with logit link, which is appropriate for propor-
tional data) with the response variable being the
confidence probability (the maximum probability
of any detection in an image if this had multiple
detections) that an image included a tag as
obtained from the deep-learning algorithm. As
predictor we used a categorical variable with two
classes representing whether the tag in the image
was readable or not readable. The model was run
using the glmmTMB package (Brooks et al. 2017)
in R version 4.0.3 (R Core Development
Team 2019). The least square means of the pre-
dictor classes were obtained using the EMMEANS
package (Russell 2020).

Quantifying manual time savings using
artificial intelligence

We attempted to estimate the time saved by using
the deep-learning algorithm versus manually pro-
cessing the images (the status quo). In doing so,
we selected a representative sample of 100 images

from across the thousands yielded by the camera
traps in our study system. Next, four of the
authors (one with multiple years of experience in
manually processing the images), two with moder-
ate experience (a few weeks of experience) and
one largely unexperienced were asked to scan
through the set of 100 images for those having a
vulture with a tag, and to record the time that this
scanning process lasted. This resulted in four dif-
ferent times, one per observer, which were then
converted to a unit of value of time (days) for 100
images per day for one camera trap active through
the year. The average (drawn from the values of
the four observers) of days per year spent manu-
ally scanning the images for tagged vultures repre-
sents the net saving in time (days) that the deep-
learning framework could yield by allowing practi-
tioners to bypass this manual step.

RESULTS

Model performance, assessed based on metrics
with respect to number of epochs trained (Fig. 2),
was very good. Metrics were derived using the
same training set at the end of each epoch. The
model reached 70.2% precision, 98.5% recall (and
therefore 82.0% F1 score) and 97.4% mean aver-
age precision at the final epoch (Fig. 2). The loss
of the model significantly dropped after around
the 80th epoch, indicating the point from which
the neural network started ‘grasping’ the key fea-
tures of tag objects and started to improve in per-
formance, with test loss gradually converging to its
minimal value at the last epoch (Fig. 2).

All testing metrics, acquired by repeatedly eval-
uating the model against the testing set (n = 230)

Figure 2. Training performance as measured by the proportion of images correctly identified by the neural network in relation to the
number of epochs. Performance is shown based on five metrics: precision (a), recall (b), mean average precision (mAP) (c), F1 (d)
and test loss score (e). See Methods for a detailed description of each of the performance metrics.
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from 1% to 99% for every 10% interval, suggest a
very good model performance. Numbers of true
positives, false positives and false negatives were
recorded for each resultant image and summed to
calculate recall, precision and F1 at each iteration,
and the optimal performance, indicated by F1
score, was found at a 40% threshold (Fig. 3),

reaching 85.8%, backed by a recall at 78.1% and a
precision at 95.1%. Finally, by averaging the preci-
sion values over all iterations, we calculated that
the mean average precision of this model was
92.3% (Fig. 3).

Results of a beta regression model using positive
images only (i.e. those with a tag) indicate that
images with a readable tag were assigned a signifi-
cantly higher (z = 2.91, p = 0.004) confidence
value of containing a vulture with a tag compared
with images with an unreadable tag (least squares
mean � se: 0.75 � 0.02 and 0.83 � 0.02, respec-
tively; see examples in Fig. 4).

The estimated time saving per year by using the
deep-learning algorithm through the web applica-
tion could range between 254 and 578 h (equiva-
lent to 11–24 full days) from processing the
images of a single camera trap operating 365 days
and yielding 100 images per day.

DISCUSSION

For the first time we show that a semi-automated
system based on deep learning can accurately iden-
tify vultures with a tag, with performance being
higher for readable tags compared with unreadable
tags. A classification cut-off threshold of 0.4 would
allow for the correct classification of almost all
images with a tag, but a slightly lower classification
accuracy is achieved for images without a tag. We
show that time savings by using this semi-
automated system could be substantial when

Figure 4. The frequency distribution of the probability of an
image having a vulture with a tag in it as assigned by the
deep-learning algorithm for images that do not include a tag
(left panel, n = 817 negative images), and images that do
include a tag (right panel, n = 230 positive images). These
images, used for testing, were never seen by the algorithm for
learning. The right panel shows the overall frequency of
images with a tag (black bars) and the frequency of images in
which the tag code is at least partly readable (light grey bars;
see Methods for more details). The black, vertical, continuous
line depicts the median value of the overall frequency in each
plot, while the dotted vertical line denotes the cut-off value of
0.4, which is suggested here to automatically separate images
as having or not having a tag.

Figure 3. Testing performance as indicated by recall, precision and F1 scores on the left panel. The inverse relationship between
recall and precision can be observed from this left panel, and therefore F1 is used to evaluate the overall model performance at each
iteration. Optimal performance based on highest F1 score is reached at a 40% threshold, as indicated. The right panel shows the
overall model performance curve (the precision–recall curve), where the average model precision value is shown by the dashed hori-
zontal line.
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cumulated over a year and across multiple camera
traps.

Overall, the performance (precision and recall
on both learning and testing images) reported for
this system is comparable to that of other studies
using deep-learning methods to efficiently detect
wildlife from remotely sensed camera images
(Norouzzadeh et al. 2018, Tabak et al. 2019,
Pucci et al. 2020, Schneider et al. 2020, Santangeli
et al. 2020a). The system presented here is based
on a limited number of classified images used for
training, and this is most likely the factor explain-
ing the slightly lower performance of our system
in correctly classifying negative images (i.e. those
without a tag) than demonstrated by Schneider
et al. (2020). However, we deem this level of per-
formance to be acceptable for its purpose. We sug-
gest that practitioners aiming to use the software
based on this system should think critically about
the trade-off between minimizing false negatives
(i.e. classifying an image as not having a tag when
it does have a tag), and minimizing false positives
(i.e. classifying an image as having a tag when it
does not). While we suggest using a default cut-off
of 0.4 for discriminating images, this decision
should be made in each case based on specific con-
ditions. For example, a project may collect many
camera trap images with a high number of tagged
animals in them, but there may be a limited work-
force to analyse the material. In this case, one may
opt to minimize the occurrence of false positives,
at the expense of having more false negatives
(missing a tag when it was there). This would
lower the number of images without a tag that are
identified as having a tag, thereby reducing the
manual workload for analysing them (i.e. wasting
time reviewing many empty images), but it also
means that a few more images with a tag would
be missed.

We acknowledge that the system we have
devised is semi-automated, as it only allows identi-
fication of tagged animals. Some manual work is
still required to analyse those images identified by
the deep-learning algorithm in order to read the
tag code and build a database for future ecological
analyses. However, even with the above limits, the
system is a major step forward towards full
automation of camera trap image processing.
Overall, the system already saves large amounts of
manual labour time and speeds up processing, ulti-
mately reducing the time taken to complete eco-
logical studies. In estimating the time saved by

using the software, we did not account for the ini-
tial installation and learning to operate the soft-
ware. We believe this should not take more than
half a day, and this is a one-off procedure. There-
fore, even if this initial time investment in the
software set up and running is factored in, the net
time savings from using it would still be close to
the values we have reported.

Further research and development should go
into making the system fully automated after the
training phase, so that it will be possible not only
to identify images with a tagged vulture, but also
to read the tag code and build a database. This
could be achieved, for example, by automating the
code reading system in a similar manner as has
been recently developed for the digitization of
labelled museum specimens (Allan et al. 2019).
Moreover, we emphasize that the deep-learning
system presented here has been trained on the
specific yellow cattle ear tag applied to vultures in
Namibia, although this is very commonly used in
several other projects on large birds across south-
ern Africa in particular (Birds of Prey Working
Group 2006). We welcome practitioners and users
of this specific tag type to use the software we
developed. We also encourage users with similar
tag types (e.g. of a different colour or shape) to
test the application and classification accuracy of
the outcome, and judge for themselves if the out-
come is satisfactory for their images.

CONCLUSIONS

The use of technology in ecology and conservation
offers unprecedented opportunities, but also chal-
lenges (Pimm et al. 2015, Lahoz-Monfort
et al. 2019). One such challenge stems from the
processing of the ‘big data’ that technology can
yield. Here we present a potential solution to one
such challenge, a semi-automated system for the
identification of marked animals from camera trap
images. Although the performance of this system
shows promising results, we encourage other
researchers to build and expand on this example
for other types of tags, and to potentially go fur-
ther in automating this system. Such a develop-
ment is much needed and urgent given the
growing number of camera trap and wildlife mark-
ing programs (Murray & Sandercock 2020, Trefry
et al. 2013, Wearn & Glover-Kapfer 2019), and
the enormous amount of time currently required
for manual processing of thousands or millions of
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camera trap images. We believe studies like ours
represent key steps towards fully automating the
collection and usage of large amounts of remotely
collected ecological data.
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